Extremely Deep Proofs

Noah Fleming, Toniann Pitassi and Robert RobereUCSDColumbia UniversityMcGill University

IAS University of Toronto

Recently, several works exhibited an extremely strong type of tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Phenomenon observed primarily in proof complexity

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Phenomenon observed primarily in proof complexity

First observed by [BBI16] — supercritical size/space tradeoff for Resolution

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Phenomenon observed primarily in proof complexity

- First observed by [BBI16] supercritical size/space tradeoff for Resolution

[Razborov16] proved a particularly strong tradeoff for tree-Resolution — there is an unsatisfiable CNF F such that any low width proof requires doubly exponential size

Recently, several works exhibited an extremely strong type of tradeoff

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

Phenomenon observed primarily in proof complexity

- First observed by [BBI16] supercritical size/space tradeoff for Resolution

[Razborov16] proved a particularly strong tradeoff for tree-Resolution — there is an unsatisfiable CNF F such that any low width proof requires doubly exponential size

Several other size/space tradeoffs for various proof systems [R17, BN20, R18]

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth.

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

- Resolution
- *k*-DNF Resolution
- Cutting Planes

Supercritical Tradeoff

When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

- Resolution Focus on for today
- *k*-DNF Resolution
- Cutting Planes

Resolution: A method for proving that a CNF formula is unsatisfiable

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula F as a set of clauses

 $F = (x_2 \lor x_3) (\bar{x}_1 \lor \bar{x}_3) (\bar{x}_2) (x_1 \lor \neg x_3)$

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

 $(x_2 \lor x_3) (\bar{x}_1 \lor \bar{x}_3) (\bar{x}_2) (x_1 \lor \neg x_3)$

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}$

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}$

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}$

Goal: Derive empty clause Λ

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}$

Goal: Derive empty clause Λ

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}$

Goal: Derive empty clause Λ

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula F as a set of clauses Derive new clauses from old ones using:

Resolution rule: $C_1 \lor x, \quad C_2 \lor \neg x$ $C_1 \vee C_2$

Goal: Derive empty clause Λ

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula F as a set of clauses Derive new clauses from old ones using:

Resolution rule: $C_1 \lor x, \quad C_2 \lor \neg x$ $C_1 \vee C_2$

Goal: Derive empty clause Λ

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $C_1 \lor x, \quad C_2 \lor \neg x$ $C_1 \vee C_2$

Goal: Derive empty clause Λ

Resolution is sound $\Longrightarrow F$ is unsatisfiable

Parameters of proofs

 $size(\Pi)$: # of clauses (7)

width(Π): max # of variables in any clause (2)

 $depth(\Pi)$: longest root-toleaf path (3)

Resolution: A method for proving that a CNF formula is unsatisfiable

Given an unsatisfiable CNF formula *F* as a set of clauses Derive new clauses from old ones using:

Resolution rule: $C_1 \lor x, \quad C_2 \lor \neg x$ $C_1 \vee C_2$

Goal: Derive empty clause Λ

Like circuit depth, proof depth captures a notion of "parallelism" of a proof

Like circuit depth, proof depth captures a notion of "parallelism" of a proof Resolution proofs capture the complexity of modern algorithms for SAT

Like circuit depth, proof depth captures a notion of "parallelism" of a proof Resolution proofs capture the complexity of modern algorithms for SAT

 \rightarrow Size lower bounds runtime

Like circuit depth, proof depth captures a notion of "parallelism" of a proof Resolution proofs capture the complexity of modern algorithms for SAT

- \rightarrow Size lower bounds runtime
- → Depth lower bounds parallelizability

Like circuit depth, proof depth captures a notion of "parallelism" of a proof Resolution proofs capture the complexity of modern algorithms for SAT \rightarrow Size lower bounds runtime \rightarrow Depth lower bounds parallelizability There is always a depth *n* Resolution proof (but may have size 2^n) 2^n

Like circuit depth, proof depth captures a notion of "parallelism" of a proof

Resolution proofs capture the complexity of modern algorithms for SAT

- \rightarrow Size lower bounds runtime
- \rightarrow Depth lower bounds parallelizability

There is always a depth *n* Resolution proof (but may have size 2^n

Many strong proof systems can be balanced — depth is always at most log of the size

Like circuit depth, proof depth captures a notion of "parallelism" of a proof

Resolution proofs capture the complexity of modern algorithms for SAT

- \rightarrow Size lower bounds runtime
- \rightarrow Depth lower bounds parallelizability

There is always a depth *n* Resolution proof (but may have size 2^n

Many strong proof systems can be balanced — depth is always at most log of the size \rightarrow Resolution (Res(k), Cutting Planes) cannot always be balanced

For any $P \in \{\text{Resolution}, \text{Res}(k), \text{Cutting Planes}\}$

There is a CNF formula *F* on *n* variables such that

- There is a polynomial size P-proof of F-
- Any subexponential-size P-proof of F must have poly(n) > n depth -

- For any $P \in \{\text{Resolution}, \text{Res}(k), \text{Cutting Planes}\}$
- There is a CNF formula *F* on *n* variables such that
- There is a weakly exponential size P-proof of F-
- Any subexponential-size P-proof of F must have weakly exponential depth

Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter that will control our tradeoff

Main Theorem (Res): There is a CNF formula F on n variables s.t.

Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter that will control our tradeoff

Main Theorem (Res): There is a CNF formula F on n variables s.t. 1. There is a Resolution-proof of size $n^c \cdot 2^{O(c)}$

Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter that will control our tradeoff

Main Theorem (Res): There is a CNF

- 1. There is a Resolution-proof of size
- 2. If Π is a Resolution-proof with size

 $depth(\Pi) \cdot log size($

formula *F* on *n* variables s.t.

$$n^{c} \cdot 2^{O(c)}$$

 $e(\Pi) \le \exp(o(n^{1-\varepsilon}/c))$ then
 $\Pi) = \Omega\left(\frac{n^{c}}{c\log n}\right)$

Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter that will control our tradeoff

Main Theorem (Res): There is a CNF

- 1. There is a Resolution-proof of size
- 2. If Π is a Resolution-proof with size

 $depth(\Pi) \cdot \log size($

A tradeoff between runtime and parallelizability for CDCL

formula *F* on *n* variables s.t.

$$n^{c} \cdot 2^{O(c)}$$

 $e(\Pi) \le \exp(o(n^{1-\varepsilon}/c))$ then
 $\Pi) = \Omega\left(\frac{n^{c}}{c\log n}\right)$

Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter that will control our tradeoff

Main Theorem (Res): There is a CNF

- 1. There is a Resolution-proof of size
- 2. If Π is a Resolution-proof with size

 $depth(\Pi) \cdot \log size($

A tradeoff between runtime and parallelizability for CDCL * Caveat: F has $n^{O(c)}$ many clauses — we'll come back to this!

formula *F* on *n* variables s.t.

$$n^{c} \cdot 2^{O(c)}$$

$$e(\Pi) \leq \exp(o(n^{1-\varepsilon}/c)) \text{ then}$$

$$\Pi) = \Omega\left(\frac{n^{c}}{c\log n}\right)$$

Hardness Condensation

1. Find CNF formula F on N variables such that (a) F has small size proofs (b) F requires deep proofs

Hardness Condensation

1. Find CNF formula F on N variables such that (e.g. pebbling formulas) (a) F has small size proofs -N(b) *F* requires deep proofs $- \Omega(N/\log N)$

Hardness Condensation

- 1. Find CNF formula F on N variables such that (e.g. pebbling formulas) (a) F has small size proofs -N(b) *F* requires deep proofs $-\Omega(N/\log N)$
- 2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and (b) hold for any small size proof

Hardness Condensation

- 1. Find CNF formula F on N variables such that (e.g. pebbling formulas) (a) F has small size proofs -N(b) *F* requires deep proofs $-\Omega(N/\log N)$
- 2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and (b) hold for any small size proof

Upshot: New F requires depth $\Omega(N/\log N)$ but only has n variables!

 \rightarrow If $n = o(N/\log N)$ we get supercritical depth lower bounds for small proofs!

Hardness Condensation

- 1. Find CNF formula F on N variables such that (e.g. pebbling formulas) (a) F has small size proofs -N(b) *F* requires deep proofs $-\Omega(N/\log N)$
- 2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and (b) hold for any small size proof

Upshot: New F requires depth $\Omega(N/\log N)$ but only has n variables!

How do we do compression?

 \rightarrow If $n = o(N/\log N)$ we get supercritical depth lower bounds for small proofs!

Hardness Condensation

- 1. Find CNF formula F on N variables such that (e.g. pebbling formulas) (a) F has small size proofs -N(b) *F* requires deep proofs $-\Omega(N/\log N)$
- 2. Compress the number of variables of F to $n \ll N$ while maintaining that (a) and (b) hold for any small size proof

Upshot: New F requires depth $\Omega(N/\log N)$ but only has n variables!

How do we do compression? Lifting!

 \rightarrow If $n = o(N/\log N)$ we get supercritical depth lower bounds for small proofs!

Composition is one of our most powerful tools for proving lower bounds

Composition is one of our most powerful tools for proving lower bounds

Composition is one of our most powerful tools for proving lower bounds

- Let $F(z_1, \ldots, z_N) = C_1 \wedge \ldots \wedge C_m$ be a CNF formula
- Let $g: \{0,1\}^t \rightarrow \{0,1\}$ be a "gadget" function

Composition is one of our most powerful tools for proving lower bounds

- Let $F(z_1, \ldots, z_N) = C_1 \wedge \ldots \wedge C_m$ be a CNF formula
- Let $g: \{0,1\}^t \rightarrow \{0,1\}$ be a "gadget" function

The composed function is $F \circ g := F(g(\vec{x}_1), \dots, g(\vec{x}_N))$

Composition is one of our most powerful tools for proving lower bounds

- Let $F(z_1, \ldots, z_N) = C_1 \wedge \ldots \wedge C_m$ be a CNF formula
- Let $g: \{0,1\}^t \rightarrow \{0,1\}$ be a "gadget" function

The composed function is $F \circ g := F(g(\vec{x}_1), ..., g(\vec{x}_N))$ Typically $\vec{x}_1, ..., \vec{x}_N$ are disjoint sets of variables

Composition is one of our most powerful tools for proving lower bounds

- Let $F(z_1, \ldots, z_N) = C_1 \wedge \ldots \wedge C_m$ be a CNF formula
- Let $g: \{0,1\}^t \rightarrow \{0,1\}$ be a "gadget" function

Let P, Q be two proof systems

A lifting theorem relates the complexity of

- P-proofs of F
- Q-proofs of $F \circ g$

The composed function is $F \circ g := F(g(\vec{x}_1), ..., g(\vec{x}_N))$ Typically $\vec{x}_1, ..., \vec{x}_N$ are disjoint sets of variables

Simple Example: $g = XOR_2$ then $F \circ XOR_2 := F(x_1 \oplus x'_1, ..., x_N \oplus x'_N)$

Simple Example: $g = XOR_2$ then $F \circ XOR_2 := F(x_1 \oplus x'_1, ..., x_N \oplus x'_N)$

Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ XOR_2$ then

 $size(\Pi) \ge 2^{\Omega(width_{Res}(F))}$

Simple Example: $g = XOR_2$ then $F \circ XOR_2 := F(x_1 \oplus x'_1, ..., x_N \oplus x'_N)$

Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ XOR_2$ then

- $size(\Pi) \ge 2^{\Omega(width_{Res}(F))}$
- $depth(\Pi) \ge depth_{Res}(F)$

Lifting (Composition) Simple Example: $g = XOR_2$ then $F \circ XOR_2 := F(x_1 \oplus x'_1, ..., x_N \oplus x'_N)$ Width-to-Size Lifting Theorem: Let F be any unsatisfiable formula. If Π is a resolution proof of $F \circ XOR_2$ then $size(\Pi) \ge 2^{\Omega(width_{Res}(F))}$ $depth(\Pi) \ge depth_{Res}(F)$

• P = Resolution, Q = Resolution

If F has a proof of size s and width $w \Longrightarrow F \circ XOR_2$ has a proof of size $O(s2^w)$

 \rightarrow Locally simulate the XOR in every step of the proof of F

If F has a proof of size s and width $w \Longrightarrow F \circ XOR_2$ has a proof of size $O(s2^w)$

 \implies Naively simulation is essentially the best! (A theme of lifting theorems)

Typically

- *P* is a "weak" proof system
- Q is a "strong" proof system

A lifting theorem shows that the most efficient Q-proof of $F \circ g$ is to simulate the most efficient P-proof of F (with some extra overhead to handle g)

Does the opposite!

Does the opposite! — Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

Does the opposite! — Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- *P* is Resolution
- Q is size-bounded Resolution

Does the opposite! — Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- *P* is Resolution
- *Q* is size-bounded Resolution

Proof Idea:

Find a gadget g such that

Does the opposite! — Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- *P* is Resolution
- *Q* is size-bounded Resolution

Proof Idea:

Find a gadget g such that

1. The number of variables *n* of $F \circ g$ will be much smaller than N

Does the opposite! — Lifts depth lower bounds on a strong proof system to (much stronger) depth lower bounds on weak proof system

- *P* is Resolution
- *Q* is size-bounded Resolution

Proof Idea:

Find a gadget g such that

- 1. The number of variables *n* of $F \circ g$ will be much smaller than N

2. Any small-size Resolution proof of $F \circ g$ will require the same depth as proving F

Our gadget will be the XOR function $F(XOR(\vec{x}_1), ..., XOR(\vec{x}_N))$

Our gadget will be the XOR function $F(XOR(\overrightarrow{x}_1), ..., XOR(\overrightarrow{x}_N))$... With a **twist**! The variable sets $\overrightarrow{x}_1, \ldots, \overrightarrow{x}_N$ will no longer be disjoint!

Our gadget will be the XOR function $F(XOR(\overrightarrow{x}_1), ..., XOR(\overrightarrow{x}_N))$... With a twist! The variable sets $\overrightarrow{x}_1, \ldots, \overrightarrow{x}_N$ will no longer be disjoint!

 \rightarrow Composing will reduce the total number of variables to $n \ll N$

Let G be an $N \times n$ bipartite graph

Let G be an $N \times n$ bipartite graph

Let *G* be an $N \times n$ bipartite graph

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

The Gadget Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

E.g.
$$((z_1 \lor \neg z_2) \land z_5) \circ \mathsf{XOR}_G$$

 $((x_1 \oplus x_3) \lor \neg (x_1 \oplus x_2)) \land x_1$

Let *G* be an $N \times n$ bipartite graph

 $F \circ \mathsf{XOR}_G \text{ replaces } z_i \mapsto \bigoplus_{x_j \in \mathsf{N}(z_i)} x_j$

Idea: If the edges of G are sufficiently "spread out"

Let G be an $N \times n$ bipartite graph

 $F \circ \mathsf{XOR}_G \text{ replaces } z_i \mapsto \bigoplus_{x_j \in \mathsf{N}(z_i)} x_j$

Idea: If the edges of G are sufficiently "spread out" \rightarrow learning the value of one XOR won't reveal much information about any other XOR

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Idea: If the edges of *G* are sufficiently "spread out" \rightarrow learning the value of one XOR won't reveal much information about any other XOR \rightarrow The best Resolution proof of *F* • XOR_{*G*} should essentially be to simulate the best proof of *F*

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Idea: If *G* is sufficiently expanding: \rightarrow learning the value of one XOR won't reveal much information about any other XOR \rightarrow The best Resolution proof of *F* • XOR_G should essentially be to simulate the best proof of *F*

r-Expanding: For any set $U \subseteq [N]$ with |U| neighbours is at least 2|U|

with $|U| \leq r$ the number of unique

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Idea: If *G* is sufficiently expanding: \rightarrow learning the value of one XOR won't reveal much information about any other XOR \rightarrow The best Resolution proof of *F* • XOR_G should essentially be to simulate the best proof of *F*

r-Expanding: For any set $U \subseteq [N]$ where $U \subseteq [N]$ is at least $2 \mid U \mid$

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Idea: If *G* is sufficiently expanding: \rightarrow learning the value of one XOR won't reveal much information about any other XOR \rightarrow The best Resolution proof of *F* • XOR_G should essentially be to simulate the best proof of *F*

r-Expanding: For any set $U \subseteq [N]$ with |U| neighbours is at least 2|U|

Let *G* be an $N \times n$ bipartite graph $F \circ XOR_G$ replaces $z_i \mapsto \bigoplus_{x_j \in N(z_i)} x_j$

Idea: If G is sufficiently expanding: \rightarrow learning the value of one XOR won't reveal much

information about any other XOR

 \rightarrow The best Resolution proof of $F \circ XOR_G$ should

essentially be to simulate the best proof of F

r-Expanding: For any set $U \subseteq [N]$ with |U| neighbours is at least 2|U|

 \rightarrow Our gadget g will be XOR_G for expanding G

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

 \rightarrow We give a simple proof

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then $depth(\Pi)width(\Pi) = \Omega(N/\log N)$

 \rightarrow We give a simple proof \rightarrow Take F = Peh

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

 \rightarrow We give a simple proof \rightarrow Take F = Peh

- $depth(\Pi)width(\Pi) = \Omega(N/\log N) = \Omega(n^c/c\log n)$

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then $depth(\Pi)width(\Pi)$

 \rightarrow We give a simple proof \rightarrow Take F = Peb, combine with width-to-size lifting theorem proves our tradeoff!

$$\Omega(N/\log N) = \Omega(n^c/c\log n)$$

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then $depth(\Pi)width(\Pi)$

- \rightarrow We give a simple proof
- Width-to-Size Lifting Theorem: If Π is a resolution proof of $F \circ XOR_2$ then
 - $size(\Pi) \ge 2^{\Omega(width_{Res}(F))}$
 - $depth(\Pi) \ge depth_{Res}(F)$

$$= \Omega(N/\log N) = \Omega(n^c/c\log n)$$

\rightarrow Take F = Peb, combine with width-to-size lifting theorem proves our tradeoff!

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) Let G be r-expanding, F any unsatisfiable formula. If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

- $depth(\Pi) \log size(\Pi) = \Omega(N/\log N) = \Omega(n^c/c \log n)$
- \rightarrow We give a simple proof
- \rightarrow Take F = Peb, combine with width-to-size lifting theorem proves our tradeoff!
- Width-to-Size Lifting Theorem: If Π is a resolution proof of $F \circ XOR_2$ then
 - $size(\Pi) \ge 2^{\Omega(width_{Res}(F))}$
 - $depth(\Pi) \ge depth_{Res}(F)$

Main Tradeoff (For Resolution)

- Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter
- **Main Theorem:** There is a CNF formula F on n variables such that 1. There is a *P*-proof of *F* of size $n^c \cdot 2^{O(c)}$ 2. If Π is a *P*-proof of *F* with size(Π) $\leq \exp(o(n^{1-\varepsilon}/c))$ then
 - $depth(\Pi) \cdot \log size($

Tradeoffs for other proof systems are obtained by an extra step of lifting!

$$\Pi) = \Omega\left(\frac{n^c}{c\log n}\right)$$

Main Tradeoff (For Resolution)

- Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter
- Main Theorem: There is a CNF formula F on n variables such that 1. There is a *P*-proof of *F* of size $n^c \cdot 2^{O(c)}$
- 2. If Π is a *P*-proof of *F* with size(Π)
 - $depth(\Pi) \cdot \log size(I)$
- Tradeoffs for other proof systems are obtained by an extra step of lifting! For Cutting Planes we use the lifting theorem of [GGKS18]

$$\leq \exp(o(n^{1-\varepsilon}/c)) \text{ then}$$
$$\Pi) = \Omega\left(\frac{n^c}{c\log n}\right)$$

Main Tradeoff (For Resolution)

- Let $\varepsilon > 0$, let $c \ge 1$ be real-valued parameter
- Main Theorem: There is a CNF formula F on n variables such that 1. There is a *P*-proof of *F* of size $n^c \cdot 2^{O(c)}$
- 2. If Π is a *P*-proof of *F* with size(Π)
 - $depth(\Pi) \cdot \log size(I)$
- Tradeoffs for other proof systems are obtained by an extra step of lifting! For Cutting Planes we use the lifting theorem of [GGKS18]
- For Res(k) we prove a Resolution width \rightarrow Res(k) size lifting theorem with g =XOR₂, which uses the switching lemma of [SBI04]

$$\leq \exp(o(n^{1-\varepsilon}/c)) \text{ then}$$
$$\Pi) = \Omega\left(\frac{n^{c}}{c \log n}\right)$$

(New) Proof of Depth Condensation

Depth Condensation Theorem:

Let G be r-expanding, F any unsatisfiable formula.

If Π is a resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$
- Our proof uses a characterization of resolution depth by Prover-Adversary games

Prover Adversary Games: Characterizes Resolution depth of proving *F*

Prover Adversary Games: Characterizes Resolution depth of proving *F*

Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$

- **Prover Adversary Games:** Characterizes Resolution depth of proving *F*
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- Prover wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- **Prover Adversary Games:** Characterizes Resolution depth of proving *F*
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- Prover wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

• Prover chooses $i \in [n]$ such that $\rho_i = *$

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in [n]$ such that $\rho_i = *$
- Adversary chooses $b \in \{0,1\}$ and sets $\rho_i = b$

- **Prover Adversary Games:** Characterizes Resolution depth of proving *F*
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- Prover wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in [n]$ such that $\rho_i = *$
- Adversary chooses $b \in \{0,1\}$ and sets $\rho_i = b$

for at least d rounds, then any resolution proof of F requires depth $\geq d$

Claim: If there is a strategy for the Adversary such that the game always continues

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in [n]$ such that $\rho_i = *$
- Adversary chooses $b \in \{0,1\}$ and sets $\rho_i = b$

w-Bounded Game: ρ remembers at most *w* variables every round. ($|\rho| \leq w$)

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in [n]$ such that $\rho_i = *$
- Adversary chooses $b \in \{0,1\}$ and sets $\rho_i = b$
- Prover chooses $S \subseteq [n]$ and sets $\rho_i = *$ for all $i \in S$ (Forgetting)

w-Bounded Game: ρ remembers at most *w* variables every round. ($|\rho| \leq w$)

- Prover Adversary Games: Characterizes Resolution depth of proving F
- Two players Prover, Adversary share a state $\rho \in \{0,1,*\}^n$, initially $\rho = *^n$
- **Prover** wants to construct a state ρ falsifying a clause of $F (\exists C \in F, C(\rho) = 0)$
- Adversary wants to prolong the game

Each round:

- Prover chooses $i \in [n]$ such that $\rho_i = *$
- Adversary chooses $b \in \{0,1\}$ and sets $\rho_i = b$
- Prover chooses $S \subseteq [n]$ and sets $\rho_i = *$ for all $i \in S$ (Forgetting)

w-Bounded Game: ρ remembers at most *w* variables every round. ($|\rho| \leq w$)

Unbounded Game: No bound on $|\rho|$

rounds.

rounds.

Pf:

rounds.

Pf: Prover will walk from the root of Π to a leaf

rounds.

Pf: Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$

rounds.

Pf: Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false

rounds.

Pf: Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \lor B$

rounds.

- **Pf:** Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \lor B$
- Prover asks about χ_i

Prover Adversary Games

- rounds.
- **Pf:** Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \lor B$
- Prover asks about χ_i

Claim: For any F, if there is a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ then there is a strategy for the Prover to win the (w + 1)-bounded game in d

Prover Adversary Games

- rounds.
- **Pf:** Prover will walk from the root of Π to a leaf **Invariant:** If current clause is C then $C(\rho) = 0$, $|\rho| \leq w$ \rightarrow Root case is satisfied: Λ is identically false Suppose current clause is $A \lor B$
- Prover asks about χ_i
- Otherwise, move to $B \vee \bar{x}_i$. Forget $A \setminus B$

Claim: For any F, if there is a Resolution proof Π of F of width $\leq w$ and depth $\leq d$ then there is a strategy for the Prover to win the (w + 1)-bounded game in d

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.

If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

High Level of Proof:

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.

If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

High Level of Proof: in the unbounded game on F

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$

If depth_{Res}(F) $\geq d \implies$ exists a strategy A for the Adversary to survive d rounds

Depth Condensation Theorem:

Let G be an r-boundary expander, F any unsatisfiable formula.

If Π is a Resolution proof of $F \circ XOR_G$ with width $(\Pi) \leq r/4$ then

High Level of Proof: in the unbounded game on F \rightarrow Use A to construct an Adversary Strategy for the w-bounded game on $F \circ XOR_G$ to survive $\Omega(d/w)$ rounds, for any $w \leq r/4$.

- $depth(\Pi)width(\Pi) = \Omega(depth_{Res}(F))$

- If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

• If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$:

set x_i arbitrarily

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

• If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$:

set x_i arbitrarily

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

• If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$:

set x_i arbitrarily

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries X_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries X_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries X_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ : - Query A for the value b of z_i on state $XOR_G(\rho)$.

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ : - Query A for the value b of z_i on state $XOR_G(\rho)$.

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :
 - Query A for the value b of z_i on state $XOR_G(\rho)$.

- Set x_i so that $\bigoplus_{t:x_t \in N(z_i)} x_t = b$

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :
 - Query A for the value b of z_i on state $XOR_G(\rho)$.

- Set x_i so that $\bigoplus_{t:x_t \in N(z_i)} x_t = b$

High Level of Proof:

If depth_{Res}(F) $\geq d \Longrightarrow$ exists a strategy A for the Adversary to survive d rounds in the unbounded game on F

Adversary strategy for $F \circ XOR_G$:

If Prover queries χ_i :

- If there are ≥ 2 variables in $N(z_i)$ for every $z_i \in N(x_i)$: set x_i arbitrarily
- If x_i is the last variable in $N(z_i)$ (for some z_i) not set in ρ :
 - Query A for the value b of z_i on state $XOR_G(\rho)$.

- Set x_i so that $\bigoplus_{t:x_t \in N(z_i)} x_t = b$

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Problem: *z*-variables are correlated

 \rightarrow Setting one can *x*-variable can force several *z*-variables

 \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Problem: *z*-variables are correlated

 \rightarrow Setting one can *x*-variable can force several *z*-variables

 \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and *z*-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

Problem: *z*-variables are correlated

- \rightarrow Setting one can *x*-variable can force several *z*-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the *x*-variables set by ρ

and z-variables determined by ρ

e.g. $\rho = [1, *, 0]$ then $G \setminus \rho$ is:

Invariant: $G \setminus \rho$ is *r*-expanding

Problem: *z*-variables are correlated

- \rightarrow Setting one can x-variable can force several z-variables
- \rightarrow Cannot follow A in this case

Use expansion to avoid this scenario!

Let $G \setminus \rho$ be induced by removing the x-variables set by ρ

and *z*-variables determined by ρ

e.g. $\rho = [1, *, 0]$ then $G \setminus \rho$ is:

Invariant: $G \setminus \rho$ is *r*-expanding

 \rightarrow Setting any x_i doesn't determine any z-variable

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional *x*-variables to restore expansion!

However... after setting an x_i , $G \setminus \rho$ may no longer be r-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

- Each time we fix a z-variable we have to query A. Can only do this d times

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

then there exists $Cl(\rho') \supseteq vars(\rho')$ such that

- Each time we fix a z-variable we have to query A. Can only do this d times
- **Closure Lemma**: If $G \setminus \rho$ is *r*-expanding and ρ' is obtained by querying some x_i ,

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

then there exists $Cl(\rho') \supseteq vars(\rho')$ such that 1. $Cl(\rho')$ fixes only a few *z*-variables $|\text{Fixed}(Cl(\rho'))| \leq 2w$

- Each time we fix a z-variable we have to query A. Can only do this d times
- **Closure Lemma**: If $G \setminus \rho$ is *r*-expanding and ρ' is obtained by querying some x_i ,

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

then there exists $Cl(\rho') \supseteq vars(\rho')$ such that

- 1. $Cl(\rho')$ fixes only a few *z*-variables | Fixed($Cl(\rho')$) | $\leq 2w$
- 2. $G \setminus Cl(\rho')$ is an *r*-expander

- Each time we fix a z-variable we have to query A. Can only do this d times
- **Closure Lemma**: If $G \setminus \rho$ is *r*-expanding and ρ' is obtained by querying some x_i ,

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

then there exists $Cl(\rho') \supseteq vars(\rho')$ such that

- 1. $Cl(\rho')$ fixes only a few *z*-variables | Fixed(Cl(ρ')) | $\leq 2w$
- 2. $G \setminus Cl(\rho')$ is an *r*-expander
- 3. The variables of $Cl(\rho') \setminus vars(\rho')$ can be set consistently with A

- Each time we fix a z-variable we have to query A. Can only do this d times
- **Closure Lemma**: If $G \setminus \rho$ is *r*-expanding and ρ' is obtained by querying some x_i ,

However... after setting an x_i , $G \setminus \rho$ may no longer be *r*-expanding \rightarrow Query additional x-variables to restore expansion!

Note: Want to assign as few z-variables while doing this

then there exists $Cl(\rho') \supseteq vars(\rho')$ such that

- 1. $Cl(\rho')$ fixes only a few *z*-variables | Fixed(Cl(ρ')) | $\leq 2w$
- 2. $G \setminus Cl(\rho')$ is an *r*-expander

3. The variables of $Cl(\rho') \setminus vars(\rho')$ can be set consistently with A

 \rightarrow To restore expansion, set the variables of $Cl(\rho') \setminus vars(\rho')!$

- Each time we fix a z-variable we have to query A. Can only do this d times
- **Closure Lemma**: If $G \setminus \rho$ is *r*-expanding and ρ' is obtained by querying some x_i ,

Adversary Strategy

If depth_{Res}(F) $\geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ XOR_G$ simulates A as follows:

Adversary Strategy

If depth_{Res}(F) $\geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ XOR_G$ simulates A as follows:

Invariant: $G \setminus \rho$ is an *r*-boundary expander

Adversary Strategy

- **Invariant:** $G \setminus \rho$ is an *r*-boundary expander
- Query: If Prover asks for the value of X_i \rightarrow Set x_i arbitrarily

If depth_{Res}(F) $\geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ XOR_G$ simulates A as follows:

Adversary Strategy If depth_{Res}(F) $\geq d \Longrightarrow \exists$ strategy A for the Adversary to survive d rounds on F Adversary strategy for w-bounded game on $F \circ XOR_G$ simulates A as follows:

Invariant: $G \setminus \rho$ is an *r*-boundary expander

Query: If Prover asks for the value of X_i

 \rightarrow Set x_i arbitrarily - Since $G \setminus \rho$ is expanding, setting x_i doesn't determine any z_i

Adversary Strateg
If $depth_{Res}(F) \ge d \Longrightarrow \exists strategy A$ for Adversary strategy for <i>w</i> -bounded gar
Invariant: $G \setminus \rho$ is an <i>r</i> -boundary expan
Query: If Prover asks for the value of x_i \rightarrow Set x_i arbitrarily $-$ Since $G \setminus \rho$ is exp
Restore Expansion: Set the variables in

JY

for the Adversary to survive d rounds on Fame on $F \circ XOR_G$ simulates A as follows:

nder

- banding, setting x_i doesn't determine any z_i
- n $Cl(\rho)$ consistent with A

Adversary Strateg
If $\operatorname{depth}_{\operatorname{Res}}(F) \ge d \Longrightarrow \exists \operatorname{strategy} A$ for
Adversary strategy for w-bounded ga
Invariant: $G \setminus \rho$ is an <i>r</i> -boundary expan
Query: If Prover asks for the value of x_i \rightarrow Set x_i arbitrarily $-$ Since $G \setminus \rho$ is exp
Restore Expansion: Set the variables in
\rightarrow By Closure Lemma, A is queried at r

Jy

for the Adversary to survive d rounds on Fame on $F \circ XOR_G$ simulates A as follows:

nder

- panding, setting x_i doesn't determine any z_i
- in $Cl(\rho)$ consistent with A
- most 2w times.

Adversary Strateg
If $depth_{Res}(F) \ge d \Longrightarrow \exists strategy A$ for $A = a = b$
Adversary strategy for w-bounded ga
Invariant: $G \setminus \rho$ is an <i>r</i> -boundary expan
Query: If Prover asks for the value of x_i \rightarrow Set x_i arbitrarily $-$ Since $G \setminus \rho$ is exp
Restore Expansion: Set the variables in
\rightarrow By Closure Lemma, A is queried at r

Each round uses O(w) queries to $A \implies$ we can continue for $\Omega(d/w)$ rounds!

Jy

for the Adversary to survive d rounds on Fame on $F \circ XOR_G$ simulates A as follows:

nder

- panding, setting x_i doesn't determine any z_i
- in $Cl(\rho)$ consistent with A
- most 2w times.

What about supercritical size/depth tradeoffs for other models of computation?

→There are functions for which any poly-size monotone circuit requires depth

 \rightarrow There are functions for which any pc $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

What about supercritical size/depth tradeoffs for other models of computation?
 →There are functions for which any poly-size monotone circuit requires depth

→ There are functions for which any pc $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

 $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

Interpolation: Any Cutting Planes proof of any F implies a monotone circuits

What about supercritical size/depth tradeoffs for other models of computation? \rightarrow There are functions for which any poly-size monotone circuit requires depth

computing an associated function f_F with the same topology [P96, HP17, FPPR17]

→There are functions for which any poly-size monotone circuit requires depth $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

Interpolation: Any Cutting Planes proof of any F implies a monotone circuits

What about supercritical size/depth tradeoffs for other models of computation?

- computing an associated function f_F with the same topology [P96, HP17, FPPR17]
- \rightarrow However, the number of variables of f_F is equal to the number of clauses of F

 $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

Interpolation: Any Cutting Planes proof of any F implies a monotone circuits

What about supercritical size/depth tradeoffs for other models of computation? \rightarrow There are functions for which any poly-size monotone circuit requires depth

- computing an associated function f_F with the same topology [P96, HP17, FPPR17] \rightarrow However, the number of variables of f_F is equal to the number of clauses of F
- ⇒ Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

 $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

Interpolation: Any Cutting Planes proof of any F implies a monotone circuits

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

What about supercritical size/depth tradeoffs for other models of computation? →There are functions for which any poly-size monotone circuit requires depth

- computing an associated function f_F with the same topology [P96, HP17, FPPR17]

 $\Omega(n/\log^{O(1)} n)$ [deRMN+20]

Q. Can this be extended to supercritical?

Interpolation: Any Cutting Planes proof of any F implies a monotone circuits

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

 \rightarrow Implies supercritical size/depth tradeoffs for monotone circuits

What about supercritical size/depth tradeoffs for other models of computation? →There are functions for which any poly-size monotone circuit requires depth

- computing an associated function f_F with the same topology [P96, HP17, FPPR17]

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

One approach...

Can the Ben-Sasson Wigderson size-width relation be balanced?

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

One approach...

Can the Ben-Sasson Wigderson size-width relation be balanced?

Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \implies a depth O(m) and width $k + O(\sqrt{n \log s})$ proof

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

One approach...

Can the Ben-Sasson Wigderson size-width relation be balanced?

Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \implies a depth O(m) and width $k + O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture & surprising depth upper bound

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

One approach...

Can the Ben-Sasson Wigderson size-width relation be balanced?

Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \implies a depth O(m) and width $k + O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture & surprising depth upper bound Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Conjecture: There exist F on m clauses such that any (quasi)polynomial size Resolution proof requires depth $\Omega(mn^4)$

One approach...

Can the Ben-Sasson Wigderson size-width relation be balanced?

Problem: Prove or disprove that for any k-CNF F on m clauses a size s Resolution proof \implies a depth O(m) and width $k + O(\sqrt{n \log s})$ proof

Win-win situation

Positive resolution: counter example to conjecture & surprising depth upper bound Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Q. Supercritical size/depth tradeoffs for non-monotone circuits?

